- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Castellano, Marco (3)
-
Roberts-Borsani, Guido (3)
-
Treu, Tommaso (3)
-
Yang, Lilan (3)
-
Bradač, Maruša (2)
-
Brammer, Gabriel (2)
-
Chen, Wenlei (2)
-
Fontana, Adriano (2)
-
Leethochawalit, Nicha (2)
-
Merlin, Emiliano (2)
-
Morishita, Takahiro (2)
-
Strait, Victoria (2)
-
Trenti, Michele (2)
-
Wang, Xin (2)
-
Zitrin, Adi (2)
-
Acebron, Ana (1)
-
Amorin, Ricardo (1)
-
Bergamini, Pietro (1)
-
Birrer, Simon (1)
-
Bonchi, Andrea (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We measure the size–luminosity relation of photometrically selected galaxies within the redshift range z ∼ 6–9, using galaxies lensed by six foreground Hubble Frontier Fields (HFF) clusters. The power afforded by strong gravitational lensing allows us to observe fainter and smaller galaxies than in blank fields. We select our sample of galaxies and obtain their properties, e.g. redshift, magnitude, from the photometrically derived ASTRODEEP catalogues. The intrinsic size is measured with the Lenstruction software, and completeness maps are created as a function of size and luminosity via the GLACiAR2 software. We perform a Bayesian analysis to estimate the intrinsic and incompleteness-corrected size–luminosity distribution, with parametrization re ∝ Lβ. We find slopes of $$\beta =0.50^{+0.07}_{-0.07}$$ at z ∼ 6 − 7 and $$\beta =0.67^{+0.14}_{-0.15}$$ at z ∼ 8.5, adopting the Bradac lens model. Our inferred slopes are consistent with other independent determinations of the size–luminosity relation from the HFF data set and steeper than that obtained from the bright galaxies in blank fields. We also investigate the systematic uncertainties associated with the choice of lens models, finding that the slopes of size–luminosity relations derived from different models are mutually consistent, i.e. modelling errors are not a significant source of discrepancy between the size–luminosity relation of blank and lensed fields.more » « less
-
Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco; Fontana, Adriano; Glazebrook, Karl; et al (, Nature)
-
Chen, Wenlei; Kelly, Patrick_L; Treu, Tommaso; Wang, Xin; Roberts-Borsani, Guido; Keen, Allison; Windhorst, Rogier_A; Zhou, Rui; Bradac, Marusa; Brammer, Gabriel; et al (, The Astrophysical Journal Letters)Abstract We report the discovery of an extremely magnified star at redshiftz= 2.65 in the James Webb Space Telescope (JWST) NIRISS pre-imaging of the A2744 galaxy-cluster field. The star’s background host galaxy lies on a fold caustic of the foreground lens, and the cluster creates a pair of images of the region close to the lensed star. We identified the bright transient in one of the merging images at a distance of ∼0.″15 from the critical curve by subtracting the JWST F115W and F150W imaging from coadditions of archival Hubble Space Telescope (HST) F105W and F125W images and F140W and F160W images, respectively. Since the time delay between the two images should be only hours, the transient must be the microlensing event of an individual star, as opposed to a luminous stellar explosion that would persist for days to months. Analysis of individual exposures suggests that the star’s magnification is not changing rapidly during the observations. From photometry of the point source through the F115W, F150W, and F200W filters, we identify a strong Balmer break, and modeling allows us to constrain the star’s temperature to be approximately 7000–12,000 K.more » « less
An official website of the United States government
